李凯 - 智能感知与信息处理实验室
动态
成果
科研
关于

李凯

Li Kai

教授
关于 团队 李凯
李凯(1963-),男,博士,教授,硕士研究生导师。主要研究领域为机器学习、深度学习、数据挖掘、模式识别等。 主持、参加了国家自然科学基金项目、高等学校博士学科点专项科研基金项目、河北省自然科学基金项目、河北省教育厅科研计划项目、河北大学教学改革研究项目等研究工作;主编与参编(翻译)《人工智能》、《微积分》、《高等数学(二)自学辅导》等3部。在国内外学术会议和期刊上发表学术论文60余篇,其中被SCI、EI检索40余篇。主讲课程包括本科生课程:人工智能、模式识别、编译原理、数据仓库与数据挖掘、Java程序设计、信息论与编码技术、计算方法等;研究生课程:人工智能、数据挖掘与知识发现、神经网络等。

河北大学网络空间安全与计算机学院
学校/单位
七一路校区C1-523
工作地点
论文
2023
J
[1]
Li Dexin(李得鑫), Li Kai(李凯,通讯).
Applied Sciences 14(1):38 (2024). SCI 中科院3区,JCR Q2
C
[2]
Zhang Xinrui(张心蕊), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
PRCV(4)2023: 113-125. SCI CCF C
C
[3]
Tian Zhongyao(田中瑶), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
PRCV(4)2023: 126-138. SCI CCF C
J
[4]
Wang Zhiwen(王志文), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
The Visual Computer 40(5): 3457-3472 (2024). SCI 中科院3区,JCR Q2
J
[5]
Yu Jiazu(于佳左), Peng Jinjia(彭锦佳,通讯), Li Kai(李凯), Wang Huibing.
 Engineering Applications of Artificial Intelligence 123(Part A): 106200 (2023). SCI 中科院2区,JCR Q1
J
[6]
李凯,张辉,崔丽娟,彭锦佳,陈泰熙.
河北大学学报(自然科学版),2023,43(02):216-224. 核心
J
[7]
Xu Zhengfu(徐正夫), Li Kai(李凯,通讯), Qinyu Zhang, Huiling Fu.
Applied Sciences 13(6): 3527 (2023). SCI 中科院3区,JCR Q2
J
[8]
Peng Feng(彭峰), Li Kai(李凯,通讯).
Applied Sciences 13(1): 674(2023). SCI 中科院3区,JCR Q2
2022
J
[9]
Zhang Shichen(张诗晨), Li Kai(李凯,通讯).
Applied Sciences 13(1):322 (2022). SCI 中科院3区,JCR Q2
J
[10]
Zhu Jiangqiang(朱江强), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳), Jing Qi.
 Electronics 12(4): 793(2023). SCI 中科院3区,JCR Q2
J
[11]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Fuzzy Set and Systems 441: 83-109 (2022). SCI 中科院1区,JCR Q1
J
[12]
李凯,张可心.
电子学报, 2022, 50(3):718–725. EI
J
[13]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Fuzzy Sets and Systems 433: 122-139 (2022). SCI 中科院1区,JCR Q1
J
[14]
Yu Jiazuo(于佳左), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
Neural Computing and Applications, Neural Computing and Applications 34(12): 9717-9731 (2022). SCI 中科院3区
2021
J
[15]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Journal of Intelligent & Fuzzy Systems 41(6): 6025-6038 (2021). SCI
J
[16]
Wang Yuxiao(王煜骁), Li Kai(李凯,通讯), Lei Yu.
Applied Intelligence 52(3): 3249-3265 (2022). SCI 中科院2区,JCR Q2
J
[17]
李凯,曹可凡,沈皓凝.
河北大学学报(自然科学版),2021,41(03):311-320. 核心
J
[18]
李凯,李洁.
计算机应用,2021,41(11):3104-3112. 核心
J
[19]
Li Kai(李凯),Zhen Lv(吕珍).
Applied Intelligence 51: 5489–5505(2021). SCI 中科院2区,JCR Q2
2020
J
[20]
李凯,李洁.
河北大学学报(自然科学版),2020,40(06):647-656. 核心
J
[21]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Mathematics 8(10): 1681-1681 (2020). SCI 中科院3区,JCR Q2
J
[22]
李凯,岳秉杰.
计算机应用,2021,41(01):157-163. 核心
2019
J
[23]
李凯,李慧.
电子学报,2019,47(10):2221–2227. EI
J
[24]
李凯,曹可凡.
河北大学学报(自然科学版),2019,39(06):657-665. 核心
2018
J
[25]
自动调整样本和特征权值的模糊聚类算法,哈尔滨工程大学学报,vol.39, No.9, 2018.
J
[26]
Fuzzy clustering with the structural α-entropy, Chinese Journal of Electronics(电子学报英文版),vol.27, No.6, 2018.
2016
J
[27]
融合腿部局部特征的步态识别方法,计算机工程与设计,vol.37, No.5, 2016.
J
[28]
一种基于神经网络的广义熵模糊聚类算法, 电子学报,vol.44, No.8, 2016.
2015
J
[29]
Gait Recognition Method by Combining Legs Region with Entire Gait Image. Chinese Journal of Electronics(电子学报英文版), 2015
2014
J
[30]
Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making, Computers & industrial engineering, v.67, 2014.
J
[31]
A novel approach to interval-valued intuitionistic fuzzy soft set based decision making, Applied mathematical modelling, v.38, 2014.
J
[32]
An adaptive fuzzy clustering algorithm with generalized entropy based on weighted sample, International journal of application or innovation in engineering & management, v.3, No.5, 2014.
J
[33]
A kernel fuzzy clustering algorithm with generalized entropy based on weighted sample, International journal of advanced computer research, v.4, No.15, 2014.
J
[34]
A fast image segmentation based on clustering technique, IPASJ International journal of information technology, v.2, No.6, 2014.
J
[35]
A weighted sample’s fuzzy clustering algorithm with generalized entropy, International journal of computer and information technology, v.3, No.4, 2014.
J
[36]
Image segmentation with fuzzy clustering based on generalized entropy, Journal of Computers, v.9, No.7, 2014.
J
[37]
Fuzzy clustering with generalized entropy based on neural network, Lecture notes in electrical engineering, v.238, 2014.
J
[38]
Parameterized intuitionistic fuzzy trapezoidal operators and their application to multiple attribute group decision making, Journal of intelligent & fuzzy systems, v.26, No.3, 2014.
J
[39]
Ensemble of image segmentation with generalized entropy-based fuzzy clustering, International Journal of Computer and Information Technology, v.3, No.5, 2014.
J
[40]
An improved linear discriminant analysis method and its application to face recognition, Applied mechanics and materials, v.556- 562, 2014.
J
[41]
基于偶对约束和马氏距离的半监督模糊聚类算法, 河北大学学报(自然科学版), vol.34, No.5, 2014.
2013
J
[42]
A fuzzy clustering algorithm with the generalized entropy based on neural network, Journal of computational information systems, v.9, No.1, 2013.
J
[43]
一种模糊加权的孪生支持向量机算法,计算机工程与应用, v.49, No.4, 2013.
J
[44]
Fuzzy clustering algorithm with generalized entropy based on feature weighting, IPASJ international journal of computer science, v.1, No.2, 2013.
J
[45]
A fuzzy twin support vector machine algorithm, International journal of application or innovation in engineering & management , v.2, No.3, 2013.
J
[46]
一种基于粗糙间隔的模糊支持向量机, 电子学报, v.41, No.6, 2013.
J
[47]
An improved semi-supervised fuzzy clustering algorithm, International journal of computer and information technology, v.2, No.4, 2013.
J
[48]
一种基于半监督学习的2DPCA人脸识别方法, 河北大学学报(自然科学版), v.33, No.4, 2013.
J
[49]
A semi-supervised fuzzy clustering algorithm based on Mahalanobis distance and Gausian kernel, 2013 International conference on mechanical and electronics engineering, v.385-386, 2013.
J
[50]
A selective fuzzy clustering ensemble algorithm, International journal of advanced computer research, v.3, No.13, 2013.
2012
J
[51]
一种基于广义熵的模糊聚类算法, 计算机工程, v.38, No.13, 2012.
J
[52]
Study of selective ensemble learning methods based on support vector machine, Physics Procedia, v.33, No.1, 2012.
C
[53]
A fast large size image segmentation algorithm based on spectral clustering, Proceedings of 2012 fourth international conference on computational and information sciences, 2012.
C
[54]
A semi-supervised 2DPCA face recognition method based on self-training, Proceedings of 2012 fourth international conference on computational and information sciences,2012.
2011
J
[55]
半监督学习算法的收敛性及其在人脸识别中的应用, 河北大学学报(自然科学版), v.31, No.1, 2011.
J
[56]
A rough margin based fuzzy support vector machine, Advanced materials research, v.204-210, 2011.
J
[57]
A subgraph-based selective classifier ensemble algorithm, Advanced materials research, v.219-220, 2011.
J
[58]
选择策略的集成学习方法研究, 计算机工程与应用, v.47, No.17, 2011.
J
[59]
Fuzzy clustering based on generalized entropy and its application to image segmentation, lecture notes in artificial intelligence, v.7003, 2, 2011. A double margin based fuzzy support vector machine algorithm, Journal of computers, v.6, No.9, 2011.
J
[60]
Unified model of fuzzy clustering algorithm based on entropy and its application to image segmentation, Journal of computational information systems, v.7, No.15, 2011.
J
[61]
基于子图策略的选择性分类器集成算法, 李凯, 计算机工程与应用, v.47, No.34, 2011.
2010
J
[62]
一种新的支持向量机集成的差异性度量方法, Proceedings of Third international symposium on intelligent information technology and security informatics, 2010.
C
[63]
基于决策树与神经网络的选择性集成学习和差异性研究, Proceedings of 2010 Chinese Control and Decision Conference, 2010.
J
[64]
层次聚类的簇集成方法研究,计算机工程与应用, v.46, No.27, 2010.
J
[65]
基于一致性与变形方法的人脸识别, Lecture notes in artificial intelligence, v.6401, 2010.
J
[66]
Convergence of GCM and its application to face recognition, Lecture notes in artificial intelligence, v.6319, 2010.
C
[67]
Study of selective ensemble learning methods based on support vector machine, Proceedings of 2010 second IITA international joint conference on artificial intelligence, 2010.
基金项目

智能引领未来

河北大学网络空间安全与计算机学院

智能感知与信息处理实验室

本站为测试内容。
Copyright © 2007 - 2025 智能感知与信息处理实验室
慧伊创新科技(北京)有限公司 / 智慧科研管理系统 / 京ICP备17005611号  
点击量 85603