李凯 - 智能感知与信息处理实验室
动态
成果
科研
关于

李凯

Li Kai

教授
关于 团队 李凯
李凯(1963-),男,博士,教授,硕士研究生导师。主要研究领域为机器学习、深度学习、数据挖掘、模式识别等。 主持、参加了国家自然科学基金项目、高等学校博士学科点专项科研基金项目、河北省自然科学基金项目、河北省教育厅科研计划项目、河北大学教学改革研究项目等研究工作;主编与参编(翻译)《人工智能》、《微积分》、《高等数学(二)自学辅导》等3部。在国内外学术会议和期刊上发表学术论文60余篇,其中被SCI、EI检索40余篇。主讲课程包括本科生课程:人工智能、模式识别、编译原理、数据仓库与数据挖掘、Java程序设计、信息论与编码技术、计算方法等;研究生课程:人工智能、数据挖掘与知识发现、神经网络等。

河北大学网络空间安全与计算机学院
学校/单位
七一路校区C1-523
工作地点
论文
2023
J
[1]
Li Dexin(李得鑫), Li Kai(李凯,通讯).
Applied Sciences 14(1):38 (2024). SCI 中科院3区,JCR Q2
C
[2]
Zhang Xinrui(张心蕊), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
PRCV(4)2023: 113-125. SCI CCF C
C
[3]
Tian Zhongyao(田中瑶), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
PRCV(4)2023: 126-138. SCI CCF C
J
[4]
Wang Zhiwen(王志文), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
The Visual Computer 40(5): 3457-3472 (2024). SCI 中科院3区,JCR Q2
J
[5]
Yu Jiazu(于佳左), Peng Jinjia(彭锦佳,通讯), Li Kai(李凯), Wang Huibing.
 Engineering Applications of Artificial Intelligence 123(Part A): 106200 (2023). SCI 中科院2区,JCR Q1
J
[6]
李凯,张辉,崔丽娟,彭锦佳,陈泰熙.
河北大学学报(自然科学版),2023,43(02):216-224. 核心
J
[7]
Xu Zhengfu(徐正夫), Li Kai(李凯,通讯), Qinyu Zhang, Huiling Fu.
Applied Sciences 13(6): 3527 (2023). SCI 中科院3区,JCR Q2
J
[8]
Peng Feng(彭峰), Li Kai(李凯,通讯).
Applied Sciences 13(1): 674(2023). SCI 中科院3区,JCR Q2
2022
J
[9]
Zhang Shichen(张诗晨), Li Kai(李凯,通讯).
Applied Sciences 13(1):322 (2022). SCI 中科院3区,JCR Q2
J
[10]
Zhu Jiangqiang(朱江强), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳), Jing Qi.
 Electronics 12(4): 793(2023). SCI 中科院3区,JCR Q2
J
[11]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Fuzzy Set and Systems 441: 83-109 (2022). SCI 中科院1区,JCR Q1
J
[12]
李凯,张可心.
电子学报, 2022, 50(3):718–725. EI
J
[13]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Fuzzy Sets and Systems 433: 122-139 (2022). SCI 中科院1区,JCR Q1
J
[14]
Yu Jiazuo(于佳左), Li Kai(李凯,通讯), Peng Jinjia(彭锦佳).
Neural Computing and Applications, Neural Computing and Applications 34(12): 9717-9731 (2022). SCI 中科院3区
2021
J
[15]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Journal of Intelligent & Fuzzy Systems 41(6): 6025-6038 (2021). SCI
J
[16]
Wang Yuxiao(王煜骁), Li Kai(李凯,通讯), Lei Yu.
Applied Intelligence 52(3): 3249-3265 (2022). SCI 中科院2区,JCR Q2
J
[17]
李凯,曹可凡,沈皓凝.
河北大学学报(自然科学版),2021,41(03):311-320. 核心
J
[18]
李凯,李洁.
计算机应用,2021,41(11):3104-3112. 核心
J
[19]
Li Kai(李凯),Zhen Lv(吕珍).
Applied Intelligence 51: 5489–5505(2021). SCI 中科院2区,JCR Q2
2020
J
[20]
李凯,李洁.
河北大学学报(自然科学版),2020,40(06):647-656. 核心
J
[21]
Zhao Yifan(赵一帆), Li Kai(李凯,通讯).
Mathematics 8(10): 1681-1681 (2020). SCI 中科院3区,JCR Q2
J
[22]
李凯,岳秉杰.
计算机应用,2021,41(01):157-163. 核心
2019
J
[23]
李凯,李慧.
电子学报,2019,47(10):2221–2227. EI
J
[24]
李凯,曹可凡.
河北大学学报(自然科学版),2019,39(06):657-665. 核心
2018
J
[25]
自动调整样本和特征权值的模糊聚类算法,哈尔滨工程大学学报,vol.39, No.9, 2018.
J
[26]
Fuzzy clustering with the structural α-entropy, Chinese Journal of Electronics(电子学报英文版),vol.27, No.6, 2018.
2016
J
[27]
融合腿部局部特征的步态识别方法,计算机工程与设计,vol.37, No.5, 2016.
J
[28]
一种基于神经网络的广义熵模糊聚类算法, 电子学报,vol.44, No.8, 2016.
2015
J
[29]
Gait Recognition Method by Combining Legs Region with Entire Gait Image. Chinese Journal of Electronics(电子学报英文版), 2015
2014
J
[30]
Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making, Computers & industrial engineering, v.67, 2014.
J
[31]
A novel approach to interval-valued intuitionistic fuzzy soft set based decision making, Applied mathematical modelling, v.38, 2014.
J
[32]
An adaptive fuzzy clustering algorithm with generalized entropy based on weighted sample, International journal of application or innovation in engineering & management, v.3, No.5, 2014.
J
[33]
A kernel fuzzy clustering algorithm with generalized entropy based on weighted sample, International journal of advanced computer research, v.4, No.15, 2014.
J
[34]
A fast image segmentation based on clustering technique, IPASJ International journal of information technology, v.2, No.6, 2014.
J
[35]
A weighted sample’s fuzzy clustering algorithm with generalized entropy, International journal of computer and information technology, v.3, No.4, 2014.
J
[36]
Image segmentation with fuzzy clustering based on generalized entropy, Journal of Computers, v.9, No.7, 2014.
J
[37]
Fuzzy clustering with generalized entropy based on neural network, Lecture notes in electrical engineering, v.238, 2014.
J
[38]
Parameterized intuitionistic fuzzy trapezoidal operators and their application to multiple attribute group decision making, Journal of intelligent & fuzzy systems, v.26, No.3, 2014.
J
[39]
Ensemble of image segmentation with generalized entropy-based fuzzy clustering, International Journal of Computer and Information Technology, v.3, No.5, 2014.
J
[40]
An improved linear discriminant analysis method and its application to face recognition, Applied mechanics and materials, v.556- 562, 2014.
J
[41]
基于偶对约束和马氏距离的半监督模糊聚类算法, 河北大学学报(自然科学版), vol.34, No.5, 2014.
2013
J
[42]
A fuzzy clustering algorithm with the generalized entropy based on neural network, Journal of computational information systems, v.9, No.1, 2013.
J
[43]
一种模糊加权的孪生支持向量机算法,计算机工程与应用, v.49, No.4, 2013.
J
[44]
Fuzzy clustering algorithm with generalized entropy based on feature weighting, IPASJ international journal of computer science, v.1, No.2, 2013.
J
[45]
A fuzzy twin support vector machine algorithm, International journal of application or innovation in engineering & management , v.2, No.3, 2013.
J
[46]
一种基于粗糙间隔的模糊支持向量机, 电子学报, v.41, No.6, 2013.
J
[47]
An improved semi-supervised fuzzy clustering algorithm, International journal of computer and information technology, v.2, No.4, 2013.
J
[48]
一种基于半监督学习的2DPCA人脸识别方法, 河北大学学报(自然科学版), v.33, No.4, 2013.
J
[49]
A semi-supervised fuzzy clustering algorithm based on Mahalanobis distance and Gausian kernel, 2013 International conference on mechanical and electronics engineering, v.385-386, 2013.
J
[50]
A selective fuzzy clustering ensemble algorithm, International journal of advanced computer research, v.3, No.13, 2013.
2012
J
[51]
一种基于广义熵的模糊聚类算法, 计算机工程, v.38, No.13, 2012.
J
[52]
Study of selective ensemble learning methods based on support vector machine, Physics Procedia, v.33, No.1, 2012.
C
[53]
A fast large size image segmentation algorithm based on spectral clustering, Proceedings of 2012 fourth international conference on computational and information sciences, 2012.
C
[54]
A semi-supervised 2DPCA face recognition method based on self-training, Proceedings of 2012 fourth international conference on computational and information sciences,2012.
2011
J
[55]
半监督学习算法的收敛性及其在人脸识别中的应用, 河北大学学报(自然科学版), v.31, No.1, 2011.
J
[56]
A rough margin based fuzzy support vector machine, Advanced materials research, v.204-210, 2011.
J
[57]
A subgraph-based selective classifier ensemble algorithm, Advanced materials research, v.219-220, 2011.
J
[58]
选择策略的集成学习方法研究, 计算机工程与应用, v.47, No.17, 2011.
J
[59]
Fuzzy clustering based on generalized entropy and its application to image segmentation, lecture notes in artificial intelligence, v.7003, 2, 2011. A double margin based fuzzy support vector machine algorithm, Journal of computers, v.6, No.9, 2011.
J
[60]
Unified model of fuzzy clustering algorithm based on entropy and its application to image segmentation, Journal of computational information systems, v.7, No.15, 2011.
J
[61]
基于子图策略的选择性分类器集成算法, 李凯, 计算机工程与应用, v.47, No.34, 2011.
2010
J
[62]
一种新的支持向量机集成的差异性度量方法, Proceedings of Third international symposium on intelligent information technology and security informatics, 2010.
C
[63]
基于决策树与神经网络的选择性集成学习和差异性研究, Proceedings of 2010 Chinese Control and Decision Conference, 2010.
J
[64]
层次聚类的簇集成方法研究,计算机工程与应用, v.46, No.27, 2010.
J
[65]
基于一致性与变形方法的人脸识别, Lecture notes in artificial intelligence, v.6401, 2010.
J
[66]
Convergence of GCM and its application to face recognition, Lecture notes in artificial intelligence, v.6319, 2010.
C
[67]
Study of selective ensemble learning methods based on support vector machine, Proceedings of 2010 second IITA international joint conference on artificial intelligence, 2010.
基金项目
2021 河北大学研究生创新资助项目
2012 河北省自然科学基金项目
2011 国家自然科学基金项目
2009 河北省自然科学基金项目

智能引领未来

河北大学网络空间安全与计算机学院

智能感知与信息处理实验室

本站为测试内容。
Copyright © 2007 - 2025 智能感知与信息处理实验室
慧伊创新科技(北京)有限公司 / 智慧科研管理系统 / 京ICP备17005611号  
点击量 74626